Applying Retrieval-Augmented Generation for Academic Discipline Development: Insights from Zero-Shot to Tree-of-Thought Prompting

Autor: Polina Shnaider, Anastasiia Chernysheva, Anton Govorov, Maksim Khlopotov, Anna Nikiforova
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Proceedings of the XXth Conference of Open Innovations Association FRUCT, Vol 36, Iss 1, Pp 741-747 (2024)
Druh dokumentu: article
ISSN: 2305-7254
2343-0737
DOI: 10.23919/FRUCT64283.2024.10749916
Popis: This study assesses the efficiency of large language models (LLMs) in generating university course structures, comparing traditional methods with Retrieval-Augmented Generation (RAG). It involves a comparative analysis across twelve courses using four LLMs: starling-lm-7b-alpha, openchat_3.5, saiga2_13b, and gpt-3.5-turbo, with four distinct prompting approaches. Findings indicate that advanced prompting techniques significantly influence model performance and response variability. The study underscores the importance of selecting appropriate LLMs and prompting strategies to optimize educational outcomes, highlighting RAG's role in enhancing data retrieval accuracy in educational technology.
Databáze: Directory of Open Access Journals