Multimodal Retinal Image Analysis via Deep Learning for the Diagnosis of Intermediate Dry Age-Related Macular Degeneration: A Feasibility Study
Autor: | Ehsan Vaghefi, Sophie Hill, Hannah M. Kersten, David Squirrell |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Journal of Ophthalmology, Vol 2020 (2020) |
Druh dokumentu: | article |
ISSN: | 2090-004X 2090-0058 |
DOI: | 10.1155/2020/7493419 |
Popis: | Background and Objective. To determine if using a multi-input deep learning approach in the image analysis of optical coherence tomography (OCT), OCT angiography (OCT-A), and colour fundus photographs increases the accuracy of a CNN to diagnose intermediate dry age-related macular degeneration (AMD). Patients and Methods. Seventy-five participants were recruited and divided into three cohorts: young healthy (YH), old healthy (OH), and patients with intermediate dry AMD. Colour fundus photography, OCT, and OCT-A scans were performed. The convolutional neural network (CNN) was trained on multiple image modalities at the same time. Results. The CNN trained using OCT alone showed a diagnostic accuracy of 94%, whilst the OCT-A trained CNN resulted in an accuracy of 91%. When multiple modalities were combined, the CNN accuracy increased to 96% in the AMD cohort. Conclusions. Here we demonstrate that superior diagnostic accuracy can be achieved when deep learning is combined with multimodal image analysis. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |