Blowup for regular solutions and $ C^{1} $ solutions of the two-phase model in $ \mathbb{R}^{N} $ with a free boundary

Autor: Jingjie Wang, Xiaoyong Wen, Manwai Yuen
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: AIMS Mathematics, Vol 7, Iss 8, Pp 15313-15330 (2022)
Druh dokumentu: article
ISSN: 2473-6988
DOI: 10.3934/math.2022839?viewType=HTML
Popis: In this paper, under the assumption of an initial bounded region $ \Omega(0) $, we establish the blowup phenomenon of the regular solutions and $ C^{1} $ solutions to the two-phase model in $ \mathbb{R}^{N} $. If the total energy $ E $ and the total mass $ M > 0 $ satisfy $ \begin{equation} \nonumber \max\limits_{\vec{x_{0}}\in\partial\Omega(0)}\sum\limits_{i = 1}^{N}u_{i}^{2}(0,\vec{x_{0}}) 0 $, then the blowup of the solutions to the two-phase model will be formed in finite time in $ \mathbb{R}^{N} $. Furthermore, under the assumptions that the radially symmetric initial data and initial density contain vacuum states, the blowup of the smooth solutions to the two-phase model will be formed in finite time in $ \mathbb{R}^{N} (N \geq2) $.
Databáze: Directory of Open Access Journals