Encapsulated actomyosin patterns drive cell-like membrane shape changes

Autor: Yashar Bashirzadeh, Hossein Moghimianavval, Allen P. Liu
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: iScience, Vol 25, Iss 5, Pp 104236- (2022)
Druh dokumentu: article
ISSN: 2589-0042
DOI: 10.1016/j.isci.2022.104236
Popis: Summary: Cell shape changes from locomotion to cytokinesis are, to a large extent, driven by myosin-driven remodeling of cortical actin patterns. Passive crosslinkers such as α-actinin and fascin as well as actin nucleator Arp2/3 complex largely determine actin network architecture and, consequently, membrane shape changes. Here we reconstitute actomyosin networks inside cell-sized lipid bilayer vesicles and show that depending on vesicle size and concentrations of α-actinin and fascin actomyosin networks assemble into ring and aster-like patterns. Anchoring actin to the membrane does not change actin network architecture yet exerts forces and deforms the membrane when assembled in the form of a contractile ring. In the presence of α-actinin and fascin, an Arp2/3 complex-mediated actomyosin cortex is shown to assemble a ring-like pattern at the equatorial cortex followed by myosin-driven clustering and consequently blebbing. An active gel theory unifies a model for the observed membrane shape changes induced by the contractile cortex.
Databáze: Directory of Open Access Journals