Autor: |
Suhel Tamboli, Sanjay Singh, Dimitry Topolnik, Mohamed El Amine Barkat, Risna Radhakrishnan, Alexandre Guet-McCreight, Lisa Topolnik |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Cell Reports, Vol 43, Iss 4, Pp 114115- (2024) |
Druh dokumentu: |
article |
ISSN: |
2211-1247 |
DOI: |
10.1016/j.celrep.2024.114115 |
Popis: |
Summary: In the CA1 hippocampus, vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) play a prominent role in disinhibitory circuit motifs. However, the specific behavioral conditions that lead to circuit disinhibition remain uncertain. To investigate the behavioral relevance of VIP-IN activity, we employed wireless technologies allowing us to monitor and manipulate their function in freely behaving mice. Our findings reveal that, during spatial exploration in new environments, VIP-INs in the CA1 hippocampal region become highly active, facilitating the rapid encoding of novel spatial information. Remarkably, both VIP-INs and pyramidal neurons (PNs) exhibit increased activity when encountering novel changes in the environment, including context- and object-related alterations. Concurrently, somatostatin- and parvalbumin-expressing inhibitory populations show an inverse relationship with VIP-IN and PN activity, revealing circuit disinhibition that occurs on a timescale of seconds. Thus, VIP-IN-mediated disinhibition may constitute a crucial element in the rapid encoding of novelty and the acquisition of recognition memory. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|