Extreme heat in India and anthropogenic climate change

Autor: G. J. van Oldenborgh, S. Philip, S. Kew, M. van Weele, P. Uhe, F. Otto, R. Singh, I. Pai, H. Cullen, K. AchutaRao
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Natural Hazards and Earth System Sciences, Vol 18, Pp 365-381 (2018)
Druh dokumentu: article
ISSN: 1561-8633
1684-9981
DOI: 10.5194/nhess-18-365-2018
Popis: On 19 May 2016 the afternoon temperature reached 51.0 °C in Phalodi in the northwest of India – a new record for the highest observed maximum temperature in India. The previous year, a widely reported very lethal heat wave occurred in the southeast, in Andhra Pradesh and Telangana, killing thousands of people. In both cases it was widely assumed that the probability and severity of heat waves in India are increasing due to global warming, as they do in other parts of the world. However, we do not find positive trends in the highest maximum temperature of the year in most of India since the 1970s (except spurious trends due to missing data). Decadal variability cannot explain this, but both increased air pollution with aerosols blocking sunlight and increased irrigation leading to evaporative cooling have counteracted the effect of greenhouse gases up to now. Current climate models do not represent these processes well and hence cannot be used to attribute heat waves in this area. The health effects of heat are often described better by a combination of temperature and humidity, such as a heat index or wet bulb temperature. Due to the increase in humidity from irrigation and higher sea surface temperatures (SSTs), these indices have increased over the last decades even when extreme temperatures have not. The extreme air pollution also exacerbates the health impacts of heat. From these factors it follows that, from a health impact point of view, the severity of heat waves has increased in India. For the next decades we expect the trend due to global warming to continue but the surface cooling effect of aerosols to diminish as air quality controls are implemented. The expansion of irrigation will likely continue, though at a slower pace, mitigating this trend somewhat. Humidity will probably continue to rise. The combination will result in a strong rise in the temperature of heat waves. The high humidity will make health effects worse, whereas decreased air pollution would decrease the impacts.
Databáze: Directory of Open Access Journals