Autor: |
Mohsen Raji, M. Amin Sabet, Behnam Ghavami |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
IEEE Access, Vol 7, Pp 66485-66495 (2019) |
Druh dokumentu: |
article |
ISSN: |
2169-3536 |
DOI: |
10.1109/ACCESS.2019.2902505 |
Popis: |
Due to the reduction in device feature size and supply voltage, achieving soft error reliability in sub-micrometer digital circuits is becoming extremely challenging. We consider the problem of choosing the gate sizes in a combinational logic circuit in order to minimize the soft error rate (SER) of the circuit. This problem can be solved using the heuristic as well as the greedy-based approaches for small-size problems; however, when the circuit size increases, the computational time grows exponentially, and hence, the previous methods become impractical. This paper proposes a novel technique for soft error tolerant design of large-scale combinational circuits using a cone-oriented gate sizing. Circuit partitioning is used to split the circuit into a set of small sub-circuits. The gates of sub-circuits are resized, such that the entire circuit SER is reduced based on a new soft error descriptor metric. The proposed cone-oriented gate sizing framework is used for selective gate sizing, leading up to 31% SER reduction with less than 17% area overhead when applied to large-scale benchmarks. The results also show that the proposed method is 21% more efficient and up to 292 times faster when compared with that obtained using a similar work based on the sensitive-based gate sizing scheme. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|