Autor: |
Fathaddin Muhammad Taufiq, Sari Alvita Kumala, Sutansyah Daddy, Ulfah Baiq Maulinda, Bae Wisup, Rakhmanto Pri Agung, Irawan Sonny |
Jazyk: |
English<br />French |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
E3S Web of Conferences, Vol 500, p 03019 (2024) |
Druh dokumentu: |
article |
ISSN: |
2267-1242 |
DOI: |
10.1051/e3sconf/202450003019 |
Popis: |
Relative permeability is a substantial parameter for estimating multi-phase fluid flow in porous rocks. It is a complex physical property that is influenced by the behavior and interactions between the fluid and rock phases. Relative permeability measurement of rock samples in laboratory can be carried out using steady-state or non-steady-state techniques. Permeability measurement is relatively difficult and time consuming. Because of the difficulty in measurement, empirical models are often used to estimate relative permeability or extrapolate to limited laboratory data. Artificial neural network (ANN) is a method that can be applied to obtain complex correlations of parameters that influence each other. In this study, ANN is used to predict the relative permeability of oil and water. The proposed model evaluates the relative permeability of a phase as a function of rock absolute permeability, porosity, depth, permeability of other phases and water saturation. A total of 159 relative permeability data from Talang Akar Formation were used for the training and testing processes. Based on the comparison between measured and calculated data, the correlation coefficients for relative permeability to water and oil using ANN method are 0.77 and 0.94 respectively. While those using regression analysis are 0.88 and 0.73 respectively. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|