The homological shift algebra of a monomial ideal
Autor: | Ficarra, Antonino, Qureshi, Ayesha Asloob |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $S=K[x_1,\dots,x_n]$ be the polynomial ring over a field $K$, and let $I\subset S$ be a monomial ideal. In this paper, we introduce the $i$th homological shift algebras $\text{HS}_i(\mathcal{R}(I))=S\oplus\bigoplus_{k\ge1}\text{HS}_i(I^k)$ of $I$. These algebras have the structure of a finitely generated bigraded module over the Rees algebra $\mathcal{R}(I)$ of $I$. Hence, many invariants of $\text{HS}_i(I^k)$, such as depth, associated primes, regularity, and the $\text{v}$-number, exhibit well behaved asymptotic behavior. We particularly investigate $\text{HS}_i(I^k)$ when $I$ has linear powers, and determine several families of monomial ideals $I$ for which $\text{HS}_i(I^k)$ has linear resolution for all $k\gg0$. Finally, we show that $\text{HS}_i(I^k)$ is Golod for all monomial ideals $I\subset S$ and all $k\gg0$. Comment: Dedicated with deep gratitude to the memory of Professor J\"urgen Herzog, inspiring mathematician and master of monomials |
Databáze: | arXiv |
Externí odkaz: |