A 6-functor formalism for solid quasi-coherent sheaves on the Fargues-Fontaine curve
Autor: | Anschütz, Johannes, Bras, Arthur-César Le, Mann, Lucas |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We develop a 6-functor formalism $\mathcal{D}_{[0,\infty)}(-)$ with $\mathbb{Z}_p$-linear coefficients on small v-stacks, and discuss consequences for duality and finiteness for pro-\'etale cohomology of rigid-analytic varieties of general pro-\'etale $\mathbb{Q}_p$-local systems as well as first examples motivated by a potential $p$-adic analog of Fargues-Scholze's geometrization program of the local Langlands correspondence. Comment: 85 pages. Comments welcome! |
Databáze: | arXiv |
Externí odkaz: |