Chromatic numbers, Buchstaber numbers and chordality of Bier spheres

Autor: Limonchenko, Ivan, Vavpetič, Aleš
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: We describe all the Bier spheres of dimension $d$ with chromatic number equal to $d+1$ and prove that all other $d$-dimensional Bier spheres have chromatic number equal to $d+2$, for any integer $d\geq 0$. Then we prove a general formula for complex and mod $p$ Buchstaber numbers of a Bier sphere $\mathrm{Bier}(K)$, for each prime $p\in\mathbb N$ in terms of the $f$-vector of the underlying simplicial complex $K$. Finally, we classify all chordal Bier spheres and obtain their canonical realizations as boundaries of stacked polytopes.
Comment: 18 pages, 7 figures
Databáze: arXiv