Symmetry-enforced minimal entanglement and correlation in quantum spin chains
Autor: | Li, Kangle, Zou, Liujun |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | The interplay between symmetry, entanglement and correlation is an interesting and important topic in quantum many-body physics. Within the framework of matrix product states, in this paper we study the minimal entanglement and correlation enforced by the $SO(3)$ spin rotation symmetry and lattice translation symmetry in a quantum spin-$J$ chain, with $J$ a positive integer. When neither symmetry is spontaneously broken, for a sufficiently long segment in a sufficiently large closed chain, we find that the minimal R\'enyi-$\alpha$ entropy compatible with these symmetries is $\min\{ -\frac{2}{\alpha-1}\ln(\frac{1}{2^\alpha}({1+\frac{1}{(2J+1)^{\alpha-1}}})), 2\ln(J+1) \}$, for any $\alpha\in\mathbb{R}^+$. In an infinitely long open chain with such symmetries, for any $\alpha\in\mathbb{R}^+$ the minimal R\'enyi-$\alpha$ entropy of half of the system is $\min\{ -\frac{1}{\alpha-1}\ln(\frac{1}{2^\alpha}({1+\frac{1}{(2J+1)^{\alpha-1}}})), \ln(J+1) \}$. When $\alpha\rightarrow 1$, these lower bounds give the symmetry-enforced minimal von Neumann entropies in these setups. Moreover, we show that no state in a quantum spin-$J$ chain with these symmetries can have a vanishing correlation length. Interestingly, the states with the minimal entanglement may not be a state with the minimal correlation length. Comment: 16 pages + appendices + references |
Databáze: | arXiv |
Externí odkaz: |