Nonlinear potential theory and Ricci-pinched 3-manifolds

Autor: Benatti, Luca, Quirós, Ariadna León, Oronzio, Francesca, Pluda, Alessandra
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Let $(M, g)$ be a complete, connected, noncompact Riemannian $3$-manifold. In this short note, we give an alternative proof, based on the nonlinear potential theory, of the fact that if $(M,g)$ satisfies the Ricci-pinching condition and superquadratic volume growth, then it is flat. This result is one of the building blocks of the proof of Hamilton's pinching conjecture.
Databáze: arXiv