Nonlinear potential theory and Ricci-pinched 3-manifolds
Autor: | Benatti, Luca, Quirós, Ariadna León, Oronzio, Francesca, Pluda, Alessandra |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $(M, g)$ be a complete, connected, noncompact Riemannian $3$-manifold. In this short note, we give an alternative proof, based on the nonlinear potential theory, of the fact that if $(M,g)$ satisfies the Ricci-pinching condition and superquadratic volume growth, then it is flat. This result is one of the building blocks of the proof of Hamilton's pinching conjecture. |
Databáze: | arXiv |
Externí odkaz: |