Exponential approximation and meromorphic interpolation

Autor: Belov, Yurii, Borichev, Alexander, Kuznetsov, Alexander
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: We establish a relation between the approximation in $L^2[-\pi,\pi]$ by exponentials with the set of frequencies of density less than $1$ and the meromorphic interpolation at $\mathbb Z$. Furthermore, we show that typical $L^2[-\pi,\pi]$ functions admit such an approximation.
Databáze: arXiv