Exponential approximation and meromorphic interpolation
Autor: | Belov, Yurii, Borichev, Alexander, Kuznetsov, Alexander |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We establish a relation between the approximation in $L^2[-\pi,\pi]$ by exponentials with the set of frequencies of density less than $1$ and the meromorphic interpolation at $\mathbb Z$. Furthermore, we show that typical $L^2[-\pi,\pi]$ functions admit such an approximation. |
Databáze: | arXiv |
Externí odkaz: |