Uniqueness in the local Donaldson-Scaduto conjecture
Autor: | Bera, Gorapada, Esfahani, Saman Habibi, Li, Yang |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | The local Donaldson-Scaduto conjecture predicts the existence and uniqueness of a special Lagrangian pair of pants with three asymptotically cylindrical ends in the Calabi-Yau 3-fold $X \times \mathbb{R}^2$, where $X$ is an ALE hyperk\"ahler 4-manifold of $A_2$-type. The existence of this special Lagrangian has previously been proved. In this paper, we prove a uniqueness theorem, showing that no other special Lagrangian pair of pants satisfies this conjecture. Comment: 17 pages |
Databáze: | arXiv |
Externí odkaz: |