A theory of appropriateness with applications to generative artificial intelligence

Autor: Leibo, Joel Z., Vezhnevets, Alexander Sasha, Diaz, Manfred, Agapiou, John P., Cunningham, William A., Sunehag, Peter, Haas, Julia, Koster, Raphael, Duéñez-Guzmán, Edgar A., Isaac, William S., Piliouras, Georgios, Bileschi, Stanley M., Rahwan, Iyad, Osindero, Simon
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: What is appropriateness? Humans navigate a multi-scale mosaic of interlocking notions of what is appropriate for different situations. We act one way with our friends, another with our family, and yet another in the office. Likewise for AI, appropriate behavior for a comedy-writing assistant is not the same as appropriate behavior for a customer-service representative. What determines which actions are appropriate in which contexts? And what causes these standards to change over time? Since all judgments of AI appropriateness are ultimately made by humans, we need to understand how appropriateness guides human decision making in order to properly evaluate AI decision making and improve it. This paper presents a theory of appropriateness: how it functions in human society, how it may be implemented in the brain, and what it means for responsible deployment of generative AI technology.
Comment: 115 pages, 2 figures
Databáze: arXiv