Popis: |
The 229Th nucleus possesses a unique low-frequency transition at 8.4 eV, which is being considered for the development of an extremely accurate nuclear clock. We investigate an electronic bridge process in the Th III ion, where nuclear excitation occurs via electronic transitions, and demonstrate that a proper choice of laser frequencies can lead to a significant enhancement of this effect. Electrons also reduce the lifetime of the nuclear excited state. Additionally, the electronic structure of the Th III ion exhibits features that make it particularly useful for probing new physics. Notably, it contains a metastable state connected to the ground state via a weak M2 transition, which can be utilized for quantum information processing, as well as searches for oscillating axion field, violation of local Lorentz invariance, test of the Einstein's equivalence principle, and measurement of nuclear weak quadrupole moment. The electronic states of the ion present a unique case of level crossing involving the 5f, 6d, and 7s single-electron states. This crossing renders the transition frequencies highly sensitive to potential time-variation of the fine-structure constant. |