$N=1$ super Virasoro tensor categories
Autor: | Creutzig, Thomas, McRae, Robert, Hunziker, Florencia Orosz, Yang, Jinwei |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We show that the category of $C_1$-cofinite modules for the universal $N=1$ super Virasoro vertex operator superalgebra $\mathcal{S}(c,0)$ at any central charge $c$ is locally finite and admits the vertex algebraic braided tensor category structure of Huang-Lepowsky-Zhang. For central charges $c^{\mathfrak{ns}}(t)=\frac{15}{2}-3(t+t^{-1})$ with $t\notin\mathbb{Q}$, we show that this tensor category is semisimple, rigid, and slightly degenerate, and we determine its fusion rules. For central charge $c^{\mathfrak{ns}}(1)=\frac{3}{2}$, we show that this tensor category is rigid and that its simple modules have the same fusion rules as $\mathrm{Rep}\,\mathfrak{osp}(1\vert 2)$, in agreement with earlier fusion rule calculations of Milas. Finally, for the remaining central charges $c^{\mathfrak{ns}}(t)$ with $t\in\mathbb{Q}^\times$, we show that the simple $\mathcal{S}(c^{\mathfrak{ns}}(t),0)$-module $\mathcal{S}_{2,2}$ of lowest conformal weight $h^{\mathfrak{ns}}_{2,2}(t)=\frac{3(t-1)^2}{8t}$ is rigid and self-dual, except possibly when $t^{\pm 1}$ is a negative integer or when $c^{\mathfrak{ns}}(t)$ is the central charge of a rational $N=1$ superconformal minimal model. As $\mathcal{S}_{2,2}$ is expected to generate the category of $C_1$-cofinite $\mathcal{S}(c^{\mathfrak{ns}}(t),0)$-modules under fusion, rigidity of $\mathcal{S}_{2,2}$ is the first key step to proving rigidity of this category for general $t\in\mathbb{Q}^\times$. Comment: 58 pages |
Databáze: | arXiv |
Externí odkaz: |