Competing phases of HfO$_2$ from multiple unstable flat phonon bands of an unconventional high-symmetry phase
Autor: | Qi, Yubo, Rabe, Karin M. |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We carry out first-principles calculations to demonstrate that the complex energy landscape and competing phases of HfO$_2$ can be understood from the four unstable flat phonon bands of an unconventional high-symmetry structure of HfO$_2$ with the space group $Cmma$. We consider structures generated from the $Cmma$ reference structure by all possible combinations of the zone center and zone boundary modes belonging to the unstable flat phonon branches. We find 12 distinct locally-stable structures, of which 5 correspond to well-known phases. We show that 6 of these 7 remaining structures can be described as period-2 superlattices of the ferroelectric $Pca2_1$ (o-FE), ferroelectric $Pnm2_1$ (o-FE2), and and monoclinic $P2_1/c$ (m) structures. We demonstrate how the unstable flat phonon bands can explain the atomically thin grain boundaries in the various types of superlattices. Finally, we point out that arbitrary-period HfO$_2$ superlattices derived from the 6 different types of period-2 superlattices are expected to form based on the flatness of the unstable phonon branches. The organizing principle provided by this work deepens our understanding of the underlying physics in the phase stability of HfO$_2$ and provides guidance for functional phase stabilization. Comment: 6 pages, 5 figures |
Databáze: | arXiv |
Externí odkaz: |