From Correlation to Causation: Understanding Climate Change through Causal Analysis and LLM Interpretations

Autor: Shan, Shan
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: This research presents a three-step causal inference framework that integrates correlation analysis, machine learning-based causality discovery, and LLM-driven interpretations to identify socioeconomic factors influencing carbon emissions and contributing to climate change. The approach begins with identifying correlations, progresses to causal analysis, and enhances decision making through LLM-generated inquiries about the context of climate change. The proposed framework offers adaptable solutions that support data-driven policy-making and strategic decision-making in climate-related contexts, uncovering causal relationships within the climate change domain.
Databáze: arXiv