Thurston construction mapping classes with minimal dilatation

Autor: Contractor, Maryam, Reed, Otto
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Given a pair of filling curves $\alpha, \beta$ on a surface of genus $g$ with $n$ punctures, we explicitly compute the mapping classes realizing the minimal dilatation over all the pseudo-Anosov maps given by the Thurston construction on $\alpha,\beta$. We do so by solving for the minimal spectral radius in a congruence subgroup of $\text{PSL}_2(\mathbb{Z})$. We apply this result to realized lower bounds on intersection number between $\alpha$ and $\beta$ to give the minimal dilatation over any Thurston construction pA map on $\Sigma_{g,n}$ given by a filling pair $\alpha \cup \beta$.
Comment: 11 pages, 3 figures
Databáze: arXiv