Popis: |
Concerns associated with occupational health and safety (OHS) remain critical and often under-addressed aspects of workforce management. This is especially true for high-risk industries such as manufacturing, construction, and mining. Such industries dominate the economy of India which is a developing country with a vast informal sector. Regulatory frameworks have been strengthened over the decades, particularly with regards to bringing the unorganized sector within the purview of law. Traditional approaches to OHS have largely been reactive and rely on post-incident analysis (which is curative) rather than preventive intervention. This paper portrays the immense potential of predictive analytics in rejuvenating OHS practices in India. Intelligent predictive analytics is driven by approaches like machine learning and statistical modeling. Its data-driven nature serves to overcome the limitations of conventional OHS methods. Predictive analytics approaches to OHS in India draw on global case studies and generative applications of predictive analytics in OHS which are customized to Indian industrial contexts. This paper attempts to explore in what ways it exhibits the potential to address challenges such as fragmented data ecosystems, resource constraints, and the variability of workplace hazards. The paper presents actionable policy recommendations to create conditions conducive to the widespread implementation of predictive analytics, which must be advocated as a cornerstone of OHS strategy. In doing so, the paper aims to spark a collaborational dialogue among policymakers, industry leaders, and technologists. It urges a shift towards intelligent practices to safeguard the well-being of India's workforce. |