Fractionally modulated discrete Carleson's Theorem and pointwise Ergodic Theorems along certain curves
Autor: | Daskalakis, Leonidas, Fragkos, Anastasios |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | For $c\in(1,2)$ we consider the following operators \[ \mathcal{C}_{c}f(x) = \sup_{\lambda \in [-1/2,1/2)}\bigg| \sum_{n \neq 0}f(x-n) \frac{e^{2\pi i\lambda \lfloor |n|^{c} \rfloor}}{n}\bigg|\text{,}\quad \mathcal{C}^{\mathsf{sgn}}_{c}f(x) = \sup_{\lambda \in [-1/2,1/2)}\bigg| \sum_{n \neq 0}f(x-n) \frac{e^{2\pi i\lambda \mathsf{sign(n)} \lfloor |n|^{c} \rfloor}}{n}\bigg| \text{,} \] and prove that both extend boundedly on $\ell^p(\mathbb{Z})$, $p\in(1,\infty)$. The second main result is establishing almost everywhere pointwise convergence for the following ergodic averages \[ A_Nf(x)=\frac{1}{N}\sum_{n=1}^Nf(T^nS^{\lfloor n^c\rfloor}x)\text{,} \] where $T,S\colon X\to X$ are commuting measure-preserving transformations on a $\sigma$-finite measure space $(X,\mu)$, and $f\in L_{\mu}^p(X)$, $p\in(1,\infty)$. The point of departure for both proofs is the study of exponential sums with phases $\xi_2 \lfloor |n^c|\rfloor+ \xi_1n$ through the use of a simple variant of the circle method. Comment: 22 pages, no figures |
Databáze: | arXiv |
Externí odkaz: |