Asynchronous Vector Consensus over Matrix-Weighted Networks

Autor: Rao, P Raghavendra, Vyavahare, Pooja
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: We study the distributed consensus of state vectors in a discrete-time multi-agent network with matrix edge weights using stochastic matrix convergence theory. We present a distributed asynchronous time update model wherein one randomly selected agent updates its state vector at a time by interacting with its neighbors. We prove that all agents converge to same state vector almost surely when every edge weight matrix is positive definite. We study vector consensus in cooperative-competitive networks with edge weights being either positive or negative definite matrices and present a necessary and sufficient condition to achieve bipartite vector consensus in such networks. We study the network structures on which agents achieve zero consensus. We also present a convergence result on nonhomogenous matrix products which is of independent interest in matrix convergence theory. All the results hold true for the synchronous time update model as well in which all agents update their states simultaneously.
Databáze: arXiv