Improved estimates for the argument and zero-counting of Riemann zeta-function
Autor: | Bellotti, Chiara, Wong, Peng-Jie |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this article, we improve the recent work of Hasanalizade, Shen, and Wong by establishing $$\left| N (T) - \frac{T}{ 2 \pi} \log \left( \frac{T}{2\pi e}\right) \right|\le 0.10076\log T+0.24460\log\log T+8.08292$$ for every $T\ge e$, where $N(T)$ is the number of non-trivial zeros $\rho=\beta+i\gamma$, with $0<\gamma \le T$, of the Riemann zeta-function $\zeta(s)$. The main source of improvement comes from implementing new subconvexity bounds for $\zeta(\sigma+it)$ on some $\sigma_k$-lines inside the critical strip. Comment: Appendix by Andrew Fiori |
Databáze: | arXiv |
Externí odkaz: |