Tree-of-Code: A Tree-Structured Exploring Framework for End-to-End Code Generation and Execution in Complex Task Handling

Autor: Ni, Ziyi, Li, Yifan, Yang, Ning, Shen, Dou, Lv, Pin, Dong, Daxiang
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Solving complex reasoning tasks is a key real-world application of agents. Thanks to the pretraining of Large Language Models (LLMs) on code data, recent approaches like CodeAct successfully use code as LLM agents' action, achieving good results. However, CodeAct greedily generates the next action's code block by relying on fragmented thoughts, resulting in inconsistency and instability. Moreover, CodeAct lacks action-related ground-truth (GT), making its supervision signals and termination conditions questionable in multi-turn interactions. To address these issues, we first introduce a simple yet effective end-to-end code generation paradigm, CodeProgram, which leverages code's systematic logic to align with global reasoning and enable cohesive problem-solving. Then, we propose Tree-of-Code (ToC), which self-grows CodeProgram nodes based on the executable nature of the code and enables self-supervision in a GT-free scenario. Experimental results on two datasets using ten popular zero-shot LLMs show ToC remarkably boosts accuracy by nearly 20% over CodeAct with less than 1/4 turns. Several LLMs even perform better on one-turn CodeProgram than on multi-turn CodeAct. To further investigate the trade-off between efficacy and efficiency, we test different ToC tree sizes and exploration mechanisms. We also highlight the potential of ToC's end-to-end data generation for supervised and reinforced fine-tuning.
Comment: This idea was first submitted to the NeuralPS Workshop "System 2 Reasoning At Scale" in September 2024. Its OpenReview: https://openreview.net/forum?id=8NKAL8Ngxk¬eId=8NKAL8Ngxk. It was then submitted to the NAACL 2025 in October 2024, which is recorded in: https://openreview.net/forum?id=S0ZUWD3Vy5¬eId=S0ZUWD3Vy5. This work predates many existing works
Databáze: arXiv