Spatial anisotropies from long wavelength tensor modes
Autor: | Noreña, Jorge, Pereira, Thiago, Reynolds, Sean K. |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We study the leading physical effect of superhorizon scalar and tensor fluctuations on a flat adiabatic universe. We show that it is described by one of three Bianchi solutions. It is well known that adiabatic scalar perturbations with wavelengths comparable to the horizon scale can mimic the spatial curvature of an otherwise flat Friedmann universe. Similarly, adiabatic tensor perturbations in the same long-wavelength limit are known to behave as a homogeneous shearing of the background spacetime, as observed in Bianchi type I cosmologies. In this work, we examine whether the simultaneous evolution of scalar and tensor adiabatic modes in the near-horizon regime could give rise to more general Bianchi cosmologies, including spatially curved cases. Assuming a matter-dominated universe, and working to first order in perturbations but at second order in a spatial gradient expansion, we identify modes that are either pure gauge or unsourced, rendering them unobservable. This enables us to derive an effective metric that retains the spatial symmetries of three known Bianchi cosmologies: type I, V, and IX. These correspond to cases where the "curvature" induced by scalar perturbations is zero, negative, or positive, respectively. Comment: 9 pages |
Databáze: | arXiv |
Externí odkaz: |