On some bilinear Fourier multipliers with oscillating factors, I

Autor: Kato, Tomoya, Miyachi, Akihiko, Shida, Naoto, Tomita, Naohito
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Bilinear Fourier multipliers of the form $e^{i (|\xi| + |\eta|+ |\xi + \eta|)} \sigma (\xi, \eta)$ are considered. It is proved that if $\sigma (\xi, \eta)$ is in the H\"ormander class $S^{m}_{1,0} (\mathbb{R}^{2n})$ with $m=-(n+1)/2$ then the corresponding bilinear operator is bounded in $L^{\infty} \times L^{\infty} \to bmo$, $h^{1} \times L^{\infty} \to L^{1}$, and $L^{\infty} \times h^{1} \to L^{1}$. This improves a result given by Rodr\'iguez-L\'opez, Rule and Staubach.
Comment: 24 pages
Databáze: arXiv