A preconditioned inverse iteration with an improved convergence guarantee

Autor: Alimisis, Foivos, Kressner, Daniel, Shao, Nian, Vandereycken, Bart
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Preconditioned eigenvalue solvers offer the possibility to incorporate preconditioners for the solution of large-scale eigenvalue problems, as they arise from the discretization of partial differential equations. The convergence analysis of such methods is intricate. Even for the relatively simple preconditioned inverse iteration (PINVIT), which targets the smallest eigenvalue of a symmetric positive definite matrix, the celebrated analysis by Neymeyr is highly nontrivial and only yields convergence if the starting vector is fairly close to the desired eigenvector. In this work, we prove a new non-asymptotic convergence result for a variant of PINVIT. Our proof proceeds by analyzing an equivalent Riemannian steepest descent method and leveraging convexity-like properties. We show a convergence rate that nearly matches the one of PINVIT. As a major benefit, we require a condition on the starting vector that tends to be less stringent. This improved global convergence property is demonstrated for two classes of preconditioners with theoretical bounds and a range of numerical experiments.
Databáze: arXiv