Popis: |
One of the challenges in diagrammatic simulations of nonequilibrium phenomena in lattice models is the large memory demand for storing momentum-dependent two-time correlation functions. This problem can be overcome with the recently introduced quantics tensor train (QTT) representation of multivariable functions. Here, we demonstrate nonequilibrium $GW$ simulations with high momentum resolution, up to times which exceed the capabilities of standard implementations and are long enough to study, e.g., thermalization dynamics and transient Floquet physics during multi-cycle electric field pulses. The self-consistent calculation on the three-leg Kadanoff-Baym contour employs only QTT-compressed functions, and input functions which are either generated directly in QTT form, or obtained via quantics tensor cross interpolation. |