Dirac operators and local invariants on perturbations of Minkowski space

Autor: Dang, Nguyen Viet, Vasy, András, Wrochna, Michał
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: For small perturbations of Minkowski space, we show that the square of the Lorentzian Dirac operator $P= -D^2$ has real spectrum apart from possible poles in a horizontal strip. Furthermore, for $\varepsilon>0$ we relate the poles of the spectral zeta function density of $P-i\varepsilon$ to local invariants, in particular to the Lorentzian scalar curvature. The proof involves microlocal propagation and radial estimates in a resolved scattering calculus as well as high energy estimates in a further resolved classical-semiclassical calculus.
Comment: 40 p
Databáze: arXiv