Dirac operators and local invariants on perturbations of Minkowski space
Autor: | Dang, Nguyen Viet, Vasy, András, Wrochna, Michał |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | For small perturbations of Minkowski space, we show that the square of the Lorentzian Dirac operator $P= -D^2$ has real spectrum apart from possible poles in a horizontal strip. Furthermore, for $\varepsilon>0$ we relate the poles of the spectral zeta function density of $P-i\varepsilon$ to local invariants, in particular to the Lorentzian scalar curvature. The proof involves microlocal propagation and radial estimates in a resolved scattering calculus as well as high energy estimates in a further resolved classical-semiclassical calculus. Comment: 40 p |
Databáze: | arXiv |
Externí odkaz: |