Latin Squares whose transversals share many entries

Autor: Ghafari, Afsane, Wanless, Ian M.
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: We prove that, for all even $n\geq10$, there exists a latin square of order $n$ with at least one transversal, yet all transversals coincide on $ \big\lfloor n/6 \big\rfloor$ entries. These latin squares have at least $ 19 n^2/36 + O(n)$ transversal-free entries. We also prove that for all odd $m\geq 3$, there exists a latin square of order $n=3m$ divided into nine $m\times m$ subsquares, where every transversal hits each of these subsquares at least once.
Databáze: arXiv