Latin Squares whose transversals share many entries
Autor: | Ghafari, Afsane, Wanless, Ian M. |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove that, for all even $n\geq10$, there exists a latin square of order $n$ with at least one transversal, yet all transversals coincide on $ \big\lfloor n/6 \big\rfloor$ entries. These latin squares have at least $ 19 n^2/36 + O(n)$ transversal-free entries. We also prove that for all odd $m\geq 3$, there exists a latin square of order $n=3m$ divided into nine $m\times m$ subsquares, where every transversal hits each of these subsquares at least once. |
Databáze: | arXiv |
Externí odkaz: |