On the generalized Cauchy dual of closed operators in Hilbert spaces
Autor: | Majumdar, Arup, Johnson, P. Sam, Mohapatra, Ram N. |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper, we introduce the generalized Cauchy dual $w(T) = T(T^{*}T)^{\dagger}$ of a closed operator $T$ with the closed range between Hilbert spaces and present intriguing findings that characterize the Cauchy dual of $T$. Additionally, we establish the result $w(T^{n}) = (w(T))^{n}$, for all $n \in \mathbb{N}$, where $T$ is a quasinormal EP operator. |
Databáze: | arXiv |
Externí odkaz: |