RoMeO: Robust Metric Visual Odometry

Autor: Cheng, Junda, Cai, Zhipeng, Zhang, Zhaoxing, Yin, Wei, Muller, Matthias, Paulitsch, Michael, Yang, Xin
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Visual odometry (VO) aims to estimate camera poses from visual inputs -- a fundamental building block for many applications such as VR/AR and robotics. This work focuses on monocular RGB VO where the input is a monocular RGB video without IMU or 3D sensors. Existing approaches lack robustness under this challenging scenario and fail to generalize to unseen data (especially outdoors); they also cannot recover metric-scale poses. We propose Robust Metric Visual Odometry (RoMeO), a novel method that resolves these issues leveraging priors from pre-trained depth models. RoMeO incorporates both monocular metric depth and multi-view stereo (MVS) models to recover metric-scale, simplify correspondence search, provide better initialization and regularize optimization. Effective strategies are proposed to inject noise during training and adaptively filter noisy depth priors, which ensure the robustness of RoMeO on in-the-wild data. As shown in Fig.1, RoMeO advances the state-of-the-art (SOTA) by a large margin across 6 diverse datasets covering both indoor and outdoor scenes. Compared to the current SOTA DPVO, RoMeO reduces the relative (align the trajectory scale with GT) and absolute trajectory errors both by >50%. The performance gain also transfers to the full SLAM pipeline (with global BA & loop closure). Code will be released upon acceptance.
Databáze: arXiv