Simplified Weak Galerkin Finite Element Methods for Biharmonic Equations on Non-Convex Polytopal Meshes
Autor: | Wang, Chunmei |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | This paper presents a simplified weak Galerkin (WG) finite element method for solving biharmonic equations avoiding the use of traditional stabilizers. The proposed WG method supports both convex and non-convex polytopal elements in finite element partitions, utilizing bubble functions as a critical analytical tool. The simplified WG method is symmetric and positive definite. Optimal-order error estimates are established for WG approximations in both the discrete $H^2$ norm and the $L^2$ norm. Comment: 19 pages |
Databáze: | arXiv |
Externí odkaz: |