Autor: |
Minamide, T. Makoto, Tanigawa, Yoshio, Watt, Nigel |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Acta Arithmetica, 216.4(2024), 291-327 |
Druh dokumentu: |
Working Paper |
DOI: |
10.4064/aa230223-28-3 |
Popis: |
Let $\Delta_{k}(x)$ be the error term in the classical asymptotic formula for the sum $\sum_{n\leq x}d_{k}(n)$, where $d_{k}(n)$ is the number of ways $n$ can be written as a product of $k$ factors. We study the analytic properties of the Dirichlet series $\sum_{n=1}^{\infty}\Delta_{k}(n)n^{-s}$ and use Perron's formula to estimate the sums $\sum_{n\leq x}\Delta_{3}(n)$ and $\sum_{n\leq x}\Delta_{4}(n)$ for large $x>0$. |
Databáze: |
arXiv |
Externí odkaz: |
|