On the sum of $\Delta_{k}(n)$ in the Piltz divisor problem for $k=3$ and $k=4$

Autor: Minamide, T. Makoto, Tanigawa, Yoshio, Watt, Nigel
Rok vydání: 2024
Předmět:
Zdroj: Acta Arithmetica, 216.4(2024), 291-327
Druh dokumentu: Working Paper
DOI: 10.4064/aa230223-28-3
Popis: Let $\Delta_{k}(x)$ be the error term in the classical asymptotic formula for the sum $\sum_{n\leq x}d_{k}(n)$, where $d_{k}(n)$ is the number of ways $n$ can be written as a product of $k$ factors. We study the analytic properties of the Dirichlet series $\sum_{n=1}^{\infty}\Delta_{k}(n)n^{-s}$ and use Perron's formula to estimate the sums $\sum_{n\leq x}\Delta_{3}(n)$ and $\sum_{n\leq x}\Delta_{4}(n)$ for large $x>0$.
Databáze: arXiv