Popis: |
To deploy LLMs on resource-contained platforms such as mobile robotics and wearables, non-transformers LLMs have achieved major breakthroughs. Recently, a novel RNN-based LLM family, Repentance Weighted Key Value (RWKV) models have shown promising results in text generation on resource-constrained devices thanks to their computational efficiency. However, these models remain too large to be deployed on embedded devices due to their high parameter count. In this paper, we propose an efficient suite of compression techniques, tailored to the RWKV architecture. These techniques include low-rank approximation, sparsity predictors, and clustering head, designed to align with the model size. Our methods compress the RWKV models by 4.95--3.8x with only 2.95pp loss in accuracy. |