Orthogonal Determinants of $\mathrm{GL}_n(q)$
Autor: | Hoyer, Linda |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $n$ be a positive integer and $q$ be a power of an odd prime. We provide explicit formulas for calculating the orthogonal determinants $\det(\chi)$, where $\chi \in \mathrm{Irr}(\mathrm{GL}_n(q))$ is an orthogonal character of even degree. Moreover, we show that $\det(\chi)$ is "odd". This confirms a special case of a conjecture by Richard Parker. Comment: 20 pages |
Databáze: | arXiv |
Externí odkaz: |