Popis: |
In this paper, we consider the problem of characterizing a robust global dependence between two brain regions where each region may contain several voxels or channels. This work is driven by experiments to investigate the dependence between two cortical regions and to identify differences in brain networks between brain states, e.g., alert and drowsy states. The most common approach to explore dependence between two groups of variables (or signals) is via canonical correlation analysis (CCA). However, it is limited to only capturing linear associations and is sensitive to outlier observations. These limitations are crucial because brain network connectivity is likely to be more complex than linear and that brain signals may exhibit heavy-tailed properties. To overcome these limitations, we develop a robust method, Kendall canonical coherence (KenCoh), for learning monotonic connectivity structure among neuronal signals filtered at given frequency bands. Furthermore, we propose the KenCoh-based permutation test to investigate the differences in brain network connectivity between two different states. Our simulation study demonstrates that KenCoh is competitive to the traditional variance-covariance estimator and outperforms the later when the underlying distributions are heavy-tailed. We apply our method to EEG recordings from a virtual-reality driving experiment. Our proposed method led to further insights on the differences of frontal-parietal cross-dependence network when the subject is alert and when the subject is drowsy and that left-parietal channel drives this dependence at the beta-band. |