Pullback attractors for nonclassical diffusion equations with a delay operator

Autor: Yang, Bin, Qin, Yuming, Miranville, Alain, Wang, Ke
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: In this paper, we consider the asymptotic behavior of weak solutions for nonclassical non-autonomous diffusion equations with a delay operator in time-dependent spaces when the nonlinear function $g$ satisfies subcritical exponent growth conditions, the delay operator $\varphi(t, u_t)$ contains some hereditary characteristics and the external force $k \in L_{l o c}^{2}\left(\mathbb{R} ; L^{2}(\Omega)\right)$. First, we prove the well-posedness of solutions by using the Faedo-Galerkin approximation method. Then after a series of elaborate energy estimates and calculations, we establish the existence and regularity of pullback attractors in time-dependent spaces $C_{\mathcal{H}_{t}(\Omega)}$ and $C_{\mathcal{H}^{1}_{t}(\Omega)}$, respectively.
Comment: 31 pages
Databáze: arXiv