Computational Explorations of Total Variation Distance
Autor: | Bhattacharyya, Arnab, Gayen, Sutanu, Meel, Kuldeep S., Myrisiotis, Dimitrios, Pavan, A., Vinodchandran, N. V. |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We investigate some previously unexplored (or underexplored) computational aspects of total variation (TV) distance. First, we give a simple deterministic polynomial-time algorithm for checking equivalence between mixtures of product distributions, over arbitrary alphabets. This corresponds to a special case, whereby the TV distance between the two distributions is zero. Second, we prove that unless $\mathsf{NP} \subseteq \mathsf{RP}$, it is impossible to efficiently estimate the TV distance between arbitrary Ising models, even in a bounded-error randomized setting. Comment: 17 pages |
Databáze: | arXiv |
Externí odkaz: |