Critical Point Criteria and Dynamically Monogenic Polynomials
Autor: | König, Joachim, Smith, Hanson, Wolske, Zack |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $K$ be a number field with ring of integers $\mathcal{O}_K$, and let $f(x)\in\mathcal{O}_K[x]$ be a monic, irreducible polynomial. We establish necessary and sufficient conditions in terms of the critical points of $f(x)$ for the iterates of $f(x)$ to be monogenic polynomials. More generally, we give necessary and sufficient conditions for the backwards orbits of elements of $\mathcal{O}_K$ under $f(x)$ to be monogenerators. We apply our criteria to construct novel examples of dynamically monogenic polynomials, yielding infinite towers of monogenic number fields with the backward orbit of one monogenerator giving a monogenerator at the next level. Comment: 23 pages. Comments welcome! |
Databáze: | arXiv |
Externí odkaz: |