VEPerform: a web resource for evaluating the performance of variant effect predictors

Autor: Zhang, Cindy, Roth, Frederick P.
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Computational variant effect predictors (VEPs) are providing increasingly strong evidence to classify the pathogenicity of missense variants. Precision vs. recall analysis is useful in evaluating VEP performance, especially when adjusted for imbalanced test sets. Here, we describe VEPerform, a web-based tool for evaluating the performance of VEPs at the gene level using balanced precision vs. recall curve (BPRC) analysis.
Databáze: arXiv