Partial Hopf actions on generalized matrix algebras

Autor: Bagio, Dirceu, Batista, Eliezer, Pinedo, Hector
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Let $\Bbbk$ be a field, $H$ a Hopf algebra over $\Bbbk$, and $R = (_iM_j)_{1 \leq i,j \leq n}$ a generalized matrix algebra. In this work, we establish necessary and sufficient conditions for $H$ to act partially on $R$. To achieve this, we introduce the concept of an opposite covariant pair and demonstrate that it satisfies a universal property. In the special case where $H = \Bbbk G$ is the group algebra of a group $G$, we recover the conditions given in \cite{BP} for the existence of a unital partial action of $G$ on $R$.
Databáze: arXiv