Autor: |
Bortz, Simon, Egert, Moritz, Saari, Olli |
Rok vydání: |
2024 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
We study the operator \[ \partial_t - \text{div} A \nabla + B \cdot \nabla \] in parabolic upper-half-space, where $A$ is an elliptic matrix satisfying an oscillation condition and $B$ is a singular drift with a Carleson control. Our main result establishes quantitative $A_{\infty}$-estimates for the parabolic measure in terms of oscillation of $A$ and smallness of $B$. The proof relies on new estimates for parabolic Green functions that quantify their deviations from linear functions of the normal variable and on a novel, quantitative Carleson measure criterion for anisotropic $A_{\infty}$-weights. |
Databáze: |
arXiv |
Externí odkaz: |
|