On the spectrum of the Landau Hamiltonian perturbed by a periodic electric potential $V\in H^s_{\mathrm {loc}}({\mathbb R}^2;{\mathbb R})$, $s > 0$
Autor: | Danilov, L. I. |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove that in a Sobolev space $H^s_{\Lambda }({\mathbb R}^2;{\mathbb R})$, $s > 0$, of periodic functions with a given period lattice $\Lambda $, there exists a dense $G_{\delta }$-set ${\mathcal O}$ such that the spectrum of the Landau Hamiltonian $H_B + V$ perturbed by any periodic electric potential $V\in {\mathcal O}$ is absolutely continuous for all homogeneous magnetic fields with a rational flux. Comment: 14 pages |
Databáze: | arXiv |
Externí odkaz: |