On the spectrum of the Landau Hamiltonian perturbed by a periodic electric potential $V\in H^s_{\mathrm {loc}}({\mathbb R}^2;{\mathbb R})$, $s > 0$

Autor: Danilov, L. I.
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: We prove that in a Sobolev space $H^s_{\Lambda }({\mathbb R}^2;{\mathbb R})$, $s > 0$, of periodic functions with a given period lattice $\Lambda $, there exists a dense $G_{\delta }$-set ${\mathcal O}$ such that the spectrum of the Landau Hamiltonian $H_B + V$ perturbed by any periodic electric potential $V\in {\mathcal O}$ is absolutely continuous for all homogeneous magnetic fields with a rational flux.
Comment: 14 pages
Databáze: arXiv