Popis: |
The potential of Wi-Fi backscatter communications systems is immense, yet challenges such as signal instability and energy constraints impose performance limits. This paper introduces FlexScatter, a Wi-Fi backscatter system using a designed scheduling strategy based on excitation prediction and rateless coding to enhance system performance. Initially, a Wi-Fi traffic prediction model is constructed by analyzing the variability of the excitation source. Then, an adaptive transmission scheduling algorithm is proposed to address the low energy consumption demands of backscatter tags, adjusting the transmission strategy according to predictive analytics and taming channel conditions. Furthermore, leveraging the benefits of low-density parity-check (LDPC) and fountain codes, a novel coding and decoding algorithm is developed, which is tailored for dynamic channel conditions. Experimental validation shows that FlexScatter reduces bit error rates (BER) by up to 30%, improves energy efficiency by 7%, and increases overall system utility by 11%, compared to conventional methods. FlexScatter's ability to balance energy consumption and communication efficiency makes it a robust solution for future IoT applications that rely on unpredictable Wi-Fi traffic. |