Existence Results of Singular Toda Systems with Sign-Changing Weight Functions
Autor: | Fei, Qiang |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We consider the existence problem of the following Singular Toda system on a compact Riemann surface $(\Sigma, g)$ without boundary \begin{equation*} \begin{cases} -\Delta_gu_1=2\overline{\rho}_1\Big({\frac{h_1e^{u_1}}{\int_{\Sigma}h_1e^{u_1}dV_g}}-1\Big)-\rho_2\Big({\frac{h_2e^{u_2}}{\int_{\Sigma}h_2e^{u_2}dV_g}}-1\Big)-4\pi\alpha_1(\delta_0-1), -\Delta_gu_2=2\rho_2\big({\frac{h_2e^{u_2}}{\int_{\Sigma}h_2e^{u_2}dV_g}}-1\big)-\overline{\rho}_1\big({\frac{h_1e^{u_1}}{\int_{\Sigma}h_1e^{u_1}dV_g}}-1\big)-4\pi\alpha_2(\delta_0-1), \end{cases} \end{equation*} where $h_1,\,h_2$ are sign-changing smooth functions, $\overline{\rho}_1:=4\pi(1+\overline{\alpha}_1),\,0<\rho_2<4\pi(1+\overline{\alpha}_2),\,\overline{\alpha}_i=\min\{0,\alpha_i\},\,\alpha_i>-1,\,i=1,2$. By relying on the proof framework established in \cite{DJLW}, the Pohozaev identity and the classical blow-up analysis, we prove the existence theorem under some appropriate condition. Our results generalize Jost-Wang's results \cite{JLW} from regular Toda system with positive functions to the singular Toda system involving sign-changing weight functions. Comment: 22 pages |
Databáze: | arXiv |
Externí odkaz: |