$s$-almost $t$-intersecting families for vector spaces
Autor: | Yu, Shuhui, Ji, Lijun |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $\mathcal{F}$ be a family of $k$-dimensional subspaces of an $n$-dimensional vector space. Write $\mathcal{D}_{\mathcal{F}}(H;t)=\{F\in \mathcal{F}\colon \dim(F\cap H)\leq t \}$ for a subspace $H$. The family $\mathcal{F}$ is called $s$-almost $t$-intersecting if $|\mathcal{D}_{\mathcal{F}}(F;t)|\leq s$ for each $F\in \mathcal{F}$. In this note, we prove that $s$-almost $t$-intersecting families with maximum size are $t$-intersecting. Comment: This manuscript has been improved joint with Dehai Liu, Kaishun Wang and Tian Yao; see arXiv:2406.05840v3 |
Databáze: | arXiv |
Externí odkaz: |