Non-local positivity bounds: islands in Terra Incognita
Autor: | Buoninfante, Luca, Shao, Long-Qi, Tokareva, Anna |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | The requirements of unitarity and causality lead to significant constraints on the Wilson coefficients of a EFT expansion, known as positivity bounds. Their standard derivation relies on the crucial assumption of polynomial boundedness on the growth of scattering amplitudes in the complex energy plane, which is a property satisfied by local QFTs, and by weakly coupled string theory in the Regge regime. The scope of this work is to clarify the role of locality by deriving generalized positivity bounds under the assumption of exponential boundedness, typical of non-local QFTs where the Froissart-Martin bound is usually not satisfied. Using appropriately modified dispersion relations, we derive new constraints and find regions in the EFT parameter space that do not admit a local UV completion. Furthermore, we show that there exist ETFs that satisfy IR causality and at the same time can admit a non-local UV completion, provided that the energy scale of non-locality is of the same order or smaller than the EFT cutoff. Finally, we provide explicit examples of non-perturbative amplitudes that simultaneously satisfy the properties of exponential boundedness, unitarity and causality. Our results have far-reaching implications for the question of the uniqueness of string theory as the only consistent ultraviolet completion beyond the framework of local QFT. Comment: 25 pages, 5 figures |
Databáze: | arXiv |
Externí odkaz: |